Multivariate predictions of local reduced-order-model errors and dimensions
نویسندگان
چکیده
This paper introduces multivariate input-output models to predict the errors and bases dimensions of local parametric Proper Orthogonal Decomposition reduced-order models. We refer to these multivariate mappings as the MP-LROM models. We employ Gaussian Processes and Artificial Neural Networks to construct approximations of these multivariate mappings. Numerical results with a viscous Burgers model illustrate the performance and potential of the machine learning based regression MP-LROM models to approximate the characteristics of parametric local reduced-order models. The predicted reduced-order models errors are compared against the multifidelity correction and reduced order model error surrogates methods predictions, whereas the predicted reduced-order dimensions are tested against the standard method based on the spectrum of snapshots matrix. Since the MP-LROM models incorporate more features and elements to construct the probabilistic mappings they achieve more accurate results. However, for high-dimensional parametric spaces, the MP-LROM models might suffer from the curse of dimensionality. Scalability challenges of MP-LROM models and the feasible ways of addressing them are also discussed in this study. keywords Local reduced-order models, Proper Orthogonal Decomposition, regression machine learning techniques.
منابع مشابه
Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation
[1] The ensemble Kalman filter (EnKF) depends on a set of ensemble forecasts to calculate the background error covariances. Without model error perturbations and the inflation of forecast ensembles, the spread of the ensemble forecasts can collapse rapidly. There are several ways to generate model perturbations, i.e., perturbations in model parameters/parameterizations, perturbations in the for...
متن کاملProviding a model based on Recommender systems for hospital services (Case: Shariati Hospital of Tehran)
Background and objectives: In the increasingly competitive market of the healthcare industry, the organizations providing health care services are highly in need of systems that will enable them to meet their clients' needs in order to achieve a high degree of patient satisfaction. To this end, health managers need to identify the factors affecting patient satisfaction focus. T...
متن کاملMultivariate Output-Associative RVM for Multi-Dimensional Affect Predictions
The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort ...
متن کاملEnhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)
The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...
متن کاملUncertainties in Evaluation of the Sediment Transport Rates in Typical Coarse-Bed Rivers in Iran
Flow and sediment transport processes are different and more complex in coarse-bed rivers than in sand-bed rivers. The main goal of the present study is to evaluate different modes of sediment transport using different hydrometric and hydraulic methods, and to address the major uncertainties. Four river reaches were selected as representatives of coarse-bed rivers in the Northwest of Iran. A se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1701.03720 شماره
صفحات -
تاریخ انتشار 2017